Power BI - Introduction à la data visualisation Tutoriels

Découvrez comment créer des rapports visuels pour une utilisation professionnelle dans Microsoft 365 grâce à cette vidéo informative.
Cette vidéo présente les étapes clés pour comprendre la notion de visualisation de données et comment créer des rapports visuels à l'aide de Microsoft Power BI.
Obtenez des conseils pratiques pour choisir les graphiques appropriés et personnaliser la mise en forme de vos rapports pour optimiser la manipulation et l'analyse des données.
Suivez cette vidéo pour en savoir plus sur la création de rapports visuels dans Microsoft 365 et comment cela peut vous aider à améliorer les performances de votre entreprise.

  • 18:48
  • 3410 vues

Objectifs :

L'objectif de cette vidéo est d'introduire les concepts fondamentaux de la visualisation des données, en expliquant son importance pour communiquer des informations de manière efficace. La vidéo aborde les raisons d'être de la visualisation des données, ses applications historiques et modernes, ainsi que des conseils pratiques pour créer des visualisations claires et informatives.


Chapitres :

  1. Introduction à la Visualisation des Données
    Avant de plonger dans la création de rapports et de visualisations, il est essentiel de comprendre l'importance de la visualisation des données. Cette vidéo vise à transmettre les messages clés sur la manière dont la visualisation peut servir de moyen de communication efficace. La visualisation des données, ou 'data visé', est un outil puissant pour raconter des histoires à travers des représentations graphiques.
  2. Pourquoi la Visualisation des Données ?
    La visualisation des données permet de simplifier des informations complexes. Une image peut souvent transmettre plus qu'un long discours. Par exemple, une représentation graphique de la campagne de Russie de Napoléon, datant de 1869, illustre comment la visualisation peut rendre des données historiques accessibles et compréhensibles. Cette visualisation montre l'évolution de l'armée française, le nombre de soldats restants et les conditions climatiques, permettant ainsi de saisir rapidement l'ampleur de la défaite.
  3. Applications Modernes de la Visualisation
    Aujourd'hui, la visualisation des données est toujours d'actualité. Par exemple, une visualisation moderne peut représenter le parcours d'un utilisateur sur un site web, illustrant les étapes de conversion et les pertes potentielles à chaque étape. Cela permet d'analyser le comportement des utilisateurs et d'optimiser les performances du site.
  4. Mettre en Avant des Informations Clés
    La visualisation permet également de mettre en avant des informations cruciales rapidement. Un exemple marquant est celui d'une visualisation en rosace réalisée par une statisticienne au 19ème siècle, qui a mis en lumière les causes de mortalité pendant la guerre de Crimée. Cette visualisation a permis de plaider pour l'introduction de mesures sanitaires dans les camps militaires.
  5. Visualisation pour Détecter des Tendances
    La visualisation aide à révéler des tendances qui peuvent passer inaperçues dans des données brutes. Par exemple, une carte de Londres au 18ème siècle, créée par John Snow, a permis d'identifier la source d'une épidémie de choléra en répertoriant les décès. Cette approche a conduit à des mesures sanitaires qui ont sauvé des vies.
  6. Principes de Création de Visualisations
    Lors de la création de visualisations, il est crucial de garder à l'esprit que chaque élément doit avoir un but. Évitez les éléments superflus et concentrez-vous sur la clarté. Les couleurs doivent être utilisées de manière significative, et les visualisations doivent être épurées pour faciliter la compréhension. Évitez les visualisations trop complexes qui peuvent nuire à la lisibilité.
  7. Hiérarchisation de l'Information
    Il est important de hiérarchiser les informations dans les rapports et les tableaux de bord. Placez les indicateurs clés en haut et organisez les données de manière aérée pour éviter la surcharge d'informations. Cela permet aux utilisateurs de se concentrer sur les éléments les plus importants sans être submergés par des détails inutiles.
  8. Conclusion
    La visualisation des données est un outil essentiel pour communiquer efficacement des informations. En appliquant les principes discutés dans cette vidéo, vous pouvez créer des visualisations qui non seulement transmettent des messages clairs, mais qui aident également à prendre des décisions éclairées. Pour approfondir vos connaissances, de nombreuses ressources sont disponibles en ligne sur la visualisation des données et la statistique.

FAQ :

Qu'est-ce que la data visualisation?

La data visualisation est la représentation graphique de données qui permet de communiquer des informations de manière claire et efficace. Elle aide à raconter une histoire à travers les données.

Pourquoi est-il important de visualiser des données?

Visualiser des données permet de rendre des informations complexes plus compréhensibles. Cela aide à identifier des tendances, des anomalies et à communiquer des messages clés rapidement.

Quels types de graphiques sont couramment utilisés en data visualisation?

Les types de graphiques couramment utilisés incluent les histogrammes, les graphiques en courbes, les diagrammes circulaires et les cartes. Chaque type a ses propres avantages selon le type de données à représenter.

Comment la data visualisation peut-elle améliorer la prise de décision?

La data visualisation permet de présenter des données de manière intuitive, facilitant ainsi l'analyse et la compréhension des informations. Cela aide les décideurs à prendre des décisions éclairées basées sur des données concrètes.

Quels outils peuvent être utilisés pour créer des visualisations de données?

Il existe plusieurs outils pour créer des visualisations de données, tels que Tableau, Power BI, Google Data Studio et Excel. Chacun de ces outils offre des fonctionnalités variées pour représenter les données graphiquement.


Quelques cas d'usages :

Analyse des performances d'un site web

Utiliser des visualisations pour suivre le parcours des utilisateurs sur un site web, identifier les étapes où les utilisateurs abandonnent et optimiser le tunnel de conversion pour augmenter les ventes.

Suivi des épidémies

Appliquer des visualisations pour représenter la propagation d'une épidémie dans une région, permettant aux autorités sanitaires de prendre des décisions éclairées sur les mesures à mettre en place.

Rapports de ventes

Créer des visualisations pour résumer les performances de vente d'une entreprise, en mettant en avant les produits les plus vendus et les périodes de forte activité, facilitant ainsi la planification stratégique.

Analyse des données de santé publique

Utiliser des visualisations pour représenter des données de santé, comme les taux de mortalité ou les causes de décès, afin de sensibiliser le public et d'informer les décideurs sur les besoins en matière de santé.

Visualisation des données démographiques

Appliquer des visualisations pour analyser les données démographiques d'une population, permettant aux urbanistes de mieux comprendre les besoins des communautés et de planifier des infrastructures adéquates.


Glossaire :

Data Visualisation

La représentation graphique de données qui permet de communiquer des informations de manière claire et efficace. Elle aide à raconter une histoire à travers les données.

Histogramme

Un type de graphique qui représente la distribution de données en utilisant des barres. La hauteur de chaque barre indique la fréquence des données dans chaque intervalle.

Conversion

Le processus par lequel un visiteur d'un site web effectue une action souhaitée, comme un achat ou une inscription.

Lead

Un contact potentiel qui a montré un intérêt pour un produit ou service, souvent en remplissant un formulaire ou en s'inscrivant à une newsletter.

Checkpoints

Des points de mesure utilisés pour suivre des données à des moments spécifiques, souvent utilisés dans des visualisations pour montrer des évolutions dans le temps.

Épidémie

Une augmentation rapide du nombre de cas d'une maladie dans une population donnée, souvent utilisée dans le contexte de la santé publique.

Statistiques

Des données collectées et analysées pour en tirer des conclusions, souvent utilisées pour comprendre des tendances ou des comportements.

00:00:00
Avant d'attaquer la partie sur la
00:00:02
création de rapports et donc sur la
00:00:04
création de nos premières visualisations,
00:00:06
je voulais commencer par une introduction
00:00:09
à la date d'utilisation afin de vous
00:00:11
faire passer les bons messages et de
00:00:13
vous expliquez en quoi la
00:00:16
data visualisation est un moyen de
00:00:18
communiquer avec d'autres personnes.
00:00:20
Alors on va aller sur les concepts
00:00:22
fondamentaux, en premier lieu en
00:00:24
expliquant la raison d'être de la data,
00:00:28
data visualisation.
00:00:28
Pardon, je vais appeler ça data visé,
00:00:31
ça ira même plus vite et ça sera
00:00:32
plus simple pour moi.
00:00:33
Et je vais essayer de vous la
00:00:35
présenter donc en 3 grands volets,
00:00:36
3 grandes thématiques et la première,
00:00:39
c'est que à quoi sert la data visé ?
00:00:41
Eh bien, elle cherche à raconter
00:00:43
une histoire pour ça qu'à la base
00:00:46
la visualisation existe,
00:00:47
c'est pour aller schématiser,
00:00:48
, comme on dit,
00:00:50
une image vaut mieux qu’une très,
00:00:52
très longue phrase.
00:00:53
Et bien ça vaut aussi ça pour la
00:00:55
représentation de données où là en
00:00:56
instant on peut comprendre énormément
00:00:58
de choses de ce qui a pu se passer
00:00:59
ou en tout cas de du message qu'on
00:01:02
souhaite faire passer avec une image.
00:01:04
Et ça, ça ne date pas d'aujourd'hui,
00:01:06
, parce que la visualisation,
00:01:07
c'est quelque chose de de vieux.
00:01:09
Et vous en avez un exemple ici,
00:01:11
avec une représentation graphique
00:01:13
qui a été faite,
00:01:15
alors je me souviens plus
00:01:16
exactement de la date,
00:01:17
mais qui a été faite d'un
00:01:18
certain temps et qui représente.
00:01:20
Voilà,
00:01:20
c'est écrit.
00:01:21
Le 20 novembre 1869 et qui correspond
00:01:24
à la campagne de Russie par Napoléon,
00:01:27
et là on verra qu'il y a en fait
00:01:28
en réalité énormément de données
00:01:29
qui s'affichent.
00:01:30
Et pourtant c'est relativement simple
00:01:32
à lire donc la campagne de Russie
00:01:34
où on va partir de ce fleuve-là.
00:01:36
Et en fait, ici,
00:01:37
on va suivre l'armée française qui
00:01:39
va s'avancer dans l'État russe.
00:01:41
L'épaisseur ici de ce de cette
00:01:43
zone correspond au nombre de
00:01:45
soldats restants dans l'armée,
00:01:47
donc on voit qu'ils étaient
00:01:49
420000 hommes au départ.
00:01:51
Potentiellement y a aussi des
00:01:53
embranchements où l'armée
00:01:54
s'est potentiellement quittée en
00:01:55
petits groupes et on voit qu’au fur
00:01:58
et à mesure de l'avancée de l'armée,
00:02:00
Eh bien il y a de moins en
00:02:02
moins 2 soldats pour finalement
00:02:04
qu'ils puissent arriver.
00:02:06
A un peu plus de 100000 soldats
00:02:08
au moment où ils arrivent à Moscou
00:02:10
et finalement on a en noir la
00:02:12
fameuse retraite de Russie,
00:02:13
donc la débandade pour
00:02:16
l'armée française où l'armée du coup
00:02:18
a dû rebrousser chemin vers de retour
00:02:21
vers la France alors que l'hiver
00:02:24
commençait donc le fameux
00:02:26
hiver russe et donc à partir de là,
00:02:29
Eh bien on va perdre de plus
00:02:31
en plus d'hommes,
00:02:32
donc là on voit ici l'évolution
00:02:34
avec les différentes dates clés.
00:02:36
Et ce qui est également intéressant,
00:02:37
c'est que sur le retour,
00:02:39
on va également vous indiquer ici
00:02:41
la température à chacun dans ce
00:02:43
qu'on va appeler des checkpoints.
00:02:45
Donc là, ici, on va 2 moins à peu près
00:02:48
moins 9°-21-20 et cetera, et cetera donc.
00:02:52
Des températures glaciales et pour
00:02:54
finalement se retrouver avec 20000
00:02:56
hommes seulement 20000 hommes
00:02:58
lors de du retour final en France.
00:03:01
Donc, une retraite très
00:03:02
dure pour la France.
00:03:04
Mais voilà, le type de visualisation
00:03:07
qu'on pouvait déjà faire.
00:03:08
À l'époque donc au 19e siècle,
00:03:11
sur un événement majeur
00:03:12
de l'histoire française.
00:03:13
Eh bien ces visualisations-là,
00:03:14
en fait, on les utilise toujours ?
00:03:16
Par exemple ici ce que vous avez donc c'est
00:03:19
une visualisation moderne de toujours pareil.
00:03:21
Une histoire en fait, qui cherche à
00:03:23
être racontée par de la visualisation,
00:03:25
et ce que vous voyez ici,
00:03:26
ce sont donc, comme Pour rappel,
00:03:28
je travaille dans le digital Analytics
00:03:30
et ce qu'on voit ici en fait ce n’est pas
00:03:33
un tunnel de conversion sur un site web.
00:03:35
On va compter pour chacune des
00:03:36
étapes clés d'un site web,
00:03:38
donc généralement ça démarre par.
00:03:39
Le fait qu'une personne vient sur
00:03:41
un site jusqu'à ce que la personne
00:03:43
effectué une conversion,
00:03:43
ça peut être un chat,
00:03:44
un achat, un abonnement,
00:03:46
la complétion d'un formulaire de rappel,
00:03:48
et cetera et cetera.
00:03:49
Et donc ici on va retrouver en fait
00:03:51
cet effet un petit peu de déperdition.
00:03:52
Ici,
00:03:53
on va passer par exemple au nombre de
00:03:55
personnes qui sont venues sur le site,
00:03:56
le nombre de vidéos vues,
00:03:58
le nombre de d'envois de ce
00:03:59
qu'on appelle un lead.
00:04:01
Donc c'est une prise de contact.
00:04:03
La qualification du lead et finalement
00:04:05
la vente qui est réalisée et à chaque
00:04:07
fois on va avoir potentiellement
00:04:09
la déperdition avec chacune des
00:04:10
taux de passage entre les étapes.
00:04:12
Donc ça c'est extrêmement important
00:04:14
pour tout ce qui va être analysé de
00:04:17
comportements sur un site web et
00:04:19
bien entre la carte de Napoléon et celle-ci,
00:04:22
on va exactement utiliser
00:04:23
les mêmes indicateurs,
00:04:24
c'est à dire une visualisation
00:04:25
globale avec la hauteur ici du
00:04:27
rectangle de l'Histogramme qui va
00:04:28
nous dire en gros la proportion de
00:04:30
personnes qui restent et après,
00:04:32
si on cherche un peu on va avoir
00:04:33
des indicateurs supplémentaires
00:04:34
avec des flèches à chaque fois qui
00:04:36
allons-nous indiquer rouge vert.
00:04:37
Donc quel est le statut de ce
00:04:40
qui a pu se passer ?
00:04:42
Le 2e concept fondamental,
00:04:43
c'est que ça sert à mettre des choses
00:04:47
qui doivent être mises en avant,
00:04:48
mises en avant justement,
00:04:50
et donc ça permet de faire passer
00:04:52
un message extrêmement rapidement.
00:04:54
L'exemple très simple qu'on peut
00:04:55
avoir alors simple ?
00:04:56
Pas tellement ce que la visualisation
00:04:58
est un peu particulière.
00:04:59
Là,
00:04:59
cette visualisation qu'on appelle en rosace,
00:05:01
ça représente le travail qui a été
00:05:04
fait par une statisticienne et une
00:05:06
infirmière dans au 19e siècle,
00:05:08
qui a essayé de résumer à l'armée
00:05:11
britannique, en gros la cause de mortalité.
00:05:14
Lors de la guerre de Crimée,
00:05:15
je crois que c'était autour de 10
00:05:17
850 et en gros, ce qu'a indiqué ici,
00:05:18
via son jeu de couleurs,
00:05:20
c'est que vous allez avoir les
00:05:22
morts réellement au champ
00:05:23
de bataille. Les morts aussi,
00:05:25
suites de leurs blessures,
00:05:26
donc de souvenirs.
00:05:26
Ici, c'est les 2 premiers traits,
00:05:28
donc le saumon et le noir.
00:05:31
Et après vous avez les morts en fait,
00:05:33
qui correspondent aux épidémies qui courent
00:05:35
dans les camps de l'armée et en gros elle
00:05:37
ce qu'elle voulait prouver et demander,
00:05:39
c'est qu'on introduise des mesures
00:05:41
sanitaires dans les zones de combat et
00:05:43
notamment dans les camps retranchés.
00:05:45
Puisque comme on peut le voir ici sur ce
00:05:46
schéma là en fait on avance dans le temps.
00:05:48
Donc juillet, août, septembre et cetera.
00:05:50
Et on a intérêt sur ce mois de janvier 10 855
00:05:54
où on a eu une masse de morts du fait
00:05:59
00:06:00
Des épidémies qui peuvent courir dans les
00:06:02
camps militaires qui étaient absolument
00:06:04
énormes et là donc instantanément
00:06:06
je pense que vous l'auriez vu que cette
00:06:08
proportion là ici est très importante
00:06:09
et ne cessé de croître au fur et à
00:06:12
mesure de l'avancée dans le temps.
00:06:14
Cet élément là encore une fois le
00:06:15
fait d'essayer de faire passer
00:06:16
un message et de faire ressortir
00:06:18
quelque chose très rapidement.
00:06:19
On peut aussi le retrouver dans
00:06:21
des visualisations modernes.
00:06:22
Ici,
00:06:22
vous allez avoir quelqu'un qui s'est
00:06:24
amusé à récupérer le nombre de décès
00:06:27
quotidiens en France entre 2001 et 2020.
00:06:30
Alors on va mettre de côté ?
00:06:31
Le COVID,
00:06:32
puisqu’il s'est passé autre chose
00:06:34
sur cette période,
00:06:35
on a eu la canicule qui était en
00:06:37
2003 et donc on voit ici cet immense
00:06:39
tralala qui a été créée et donc qui
00:06:41
correspond à l'été qu'on avait en 2003.
00:06:44
Il y avait énormément de de décès
00:06:46
parmi les personnes âgées et donc
00:06:47
de la même manière.
00:06:49
Ici,
00:06:49
on va avoir ce système circulaire
00:06:51
avec des points clés à chacune
00:06:53
des étapes et potentiellement du
00:06:54
coup un événement exceptionnel.
00:06:56
En tout cas quelque chose qu'on
00:06:58
souhaitait mettre en avant et qui ressort
00:07:00
instantanément et donc là pareil,
00:07:01
le message il est clairement passé.
00:07:03
Il y a eu un phénomène extraordinaire
00:07:05
enfin extraordinaire,
00:07:05
dans le sens rare sur cette période-là.
00:07:11
Dernier point que je voulais aborder,
00:07:13
donc là on reste vraiment sur la théorie,
00:07:15
pour l'instant, mais je pense que
00:07:16
cette mise au point est importante.
00:07:18
La dette avisée existe également
00:07:21
car elle permet de montrer des choses qui
00:07:24
sont imperceptibles avec des données brutes.
00:07:27
Vous pouvez tout à fait vous
00:07:28
retrouver devant un tableau de
00:07:29
données et avoir du mal à l'utiliser.
00:07:31
En tout cas de passer à côté de certaines
00:07:34
informations clés juste parce qu'elles
00:07:35
ne sont pas représentées visuellement.
00:07:37
Donc ici ce qu'on a,
00:07:39
c'est une représentation de la ville, de.
00:07:41
Londres si je ne me trompe pas,
00:07:43
c'est tôt 18e siècle également où
00:07:46
sévissait une épidémie de choléra.
00:07:48
Et donc ce médecin qui s'appelait John Snow,
00:07:52
ça ne s'invente pas à décider
00:07:55
tout simplement de répertorier
00:07:56
les différents morts du choléra.
00:07:58
Qui a pu avoir dans la ville et
00:08:00
notamment dans le quartier de Soho où
00:08:01
il y avait une épidémie
00:08:03
où l'épidémie du choléra était très,
00:08:05
très forte et donc ce qu'il a
00:08:06
eu l'idée de faire,
00:08:07
c'est tout simplement de mettre un trait
00:08:10
devant chaque palier où il y a eu un décès.
00:08:13
Et donc c'est la carte que vous voyez ici,
00:08:14
donc on se retrouve ici avec le quartier de
00:08:17
Soho et donc on voit ici les fameux petits
00:08:19
traits qu'il a rajouté pour chacun des décès.
00:08:21
Et si on zoome sous cette zone,
00:08:23
là on voit qu'en fait donc cette zone
00:08:25
où il y a eu énormément de décès,
00:08:26
si on zoome sur cette zone,
00:08:28
on voit qu'en fait il y a énormément
00:08:29
de décès,
00:08:30
notamment là ici dans cette zone,
00:08:31
dans cet immeuble qui ont été très
00:08:33
proches d'une pompe contenant de l'eau
00:08:35
et en fait ils se sont rendu compte,
00:08:38
avec ces analyses de John Snow,
00:08:39
que à côté de cette pompe,
00:08:41
il y avait un espace de.
00:08:42
Plus de déchets qui étaient ou des
00:08:45
couches de bébé et ayant le choléra
00:08:47
avaient été jetées et donc ça a contaminé
00:08:50
l'eau de la pompe et donc des gens ont
00:08:53
bu cette eau et ont attrapé le choléra.
00:08:55
Et à partir de là,
00:08:56
ils ont pu fermer la pompe et là
00:08:58
l'assainir afin de ralentir l'épidémie
00:09:00
de choléra dans la vie,
00:09:02
donc là encore une fois,
00:09:03
s’il n’avait pas effectué ce travail de
00:09:05
visualisation et il l'aurait sans doute,
00:09:07
et c'est ce qui s'est passé au
00:09:09
niveau des autorités sanitaires,
00:09:10
il serait passé à côté de cette
00:09:14
information primordiale.
00:09:15
Et là,
00:09:16
on va avoir encore une fois des
00:09:18
équivalents avec des données qui
00:09:20
proviennent de notre monde actuel.
00:09:24
On va essayer de charger la vidéo alors à
00:09:28
l'instant je vais rebasculer. Normalement.
00:09:32
Ah alors, elle ne s'affiche pas.
00:09:38
Alors ça a l'air d'être revenu parfait.
00:09:41
On va essayer de la lancer.
00:09:43
Voilà. On va couper le son,
00:09:46
donc ici ce que vous allez voir en fait,
00:09:47
c'est une représentation graphique
00:09:49
assez moderne ou en gros une
00:09:51
personne n’a réussi à récupérer en
00:09:53
fait l'ensemble des connexions
00:09:54
mobiles d'une zone géographique.
00:09:56
Donc on se trouve en 2019,
00:09:58
au début du COVID et la personne
00:09:59
s'est intéressée aux personnes
00:10:00
qui participent à ce qu'on appelle
00:10:02
le Spring break aux États-Unis.
00:10:03
Donc en gros c'est la
00:10:05
période de printemps.
00:10:06
Après les examens universitaires où
00:10:08
en gros toutes les tous les jeunes se
00:10:10
retrouvent sur la plage et notamment
00:10:12
en Floride pour faire la fête.
00:10:15
Il se trouve qu'il y a énormément de
00:10:17
contamination au COVID-19 sur cette
00:10:18
plage et donc là ce qu'il en train de faire,
00:10:21
c'est qu'il est en train de sélectionner
00:10:23
en gros toutes les connexions
00:10:24
mobiles qu'il y a eu sur la plage
00:10:25
au cours du springbreak et après il
00:10:27
va pouvoir avancer dans le temps,
00:10:28
donc là voilà il crée un groupe
00:10:30
et il va pouvoir avancer dans le
00:10:31
temps pour voir en gros tout ce
00:10:33
cluster de contamination.
00:10:34
Comment il s'est diffusé au sein de
00:10:35
pays parce que ces personnes-là,
00:10:37
donc leur voix,
00:10:37
qu'ils rentrent dans la ville et
00:10:38
on voit quelques jours plus tard,
00:10:40
les personnes rentraient chez eux
00:10:41
et donc elles aient bien contaminé
00:10:43
une grande partie alors.
00:10:45
Évidemment, tout ne l'aurais pas reproché,
00:10:46
mais en tous les cas,
00:10:47
on voit comment une épidémie peut
00:10:49
se diffuser puisque là,
00:10:50
toutes les personnes sont rentrées chez eux,
00:10:52
donc on voit toute la partie est
00:10:54
des États-Unis qui ont été impactées
00:10:55
du coup par ces flux migratoires
00:10:57
d'étudiants qui sont venus en Floride
00:10:59
et qui se sont qui se sont contaminés.
00:11:01
Donc voilà un exemple de visualisation.
00:11:03
Encore une fois,
00:11:04
on utilise une carte et quelque
00:11:07
chose qui aurait été très difficile
00:11:09
à voir à l'œil nu.
00:11:11
Voilà pour ces grands principes, on va.
00:11:15
Du coup, reprend.
00:11:17
Un petit exemple assez simple
00:11:18
ou comme je vous disais,
00:11:19
à partir de données brutes,
00:11:20
il n'est pas toujours simple de
00:11:22
se rencontre de certaines choses
00:11:23
et je vous donne ici, par exemple,
00:11:25
un tableau de données avec les
00:11:26
mois de l'année et également le
00:11:28
nombre de pages vues qu'il peut y
00:11:30
avoir sur un site web.
00:11:31
Donc en gros les pages vues,
00:11:32
c'est la fréquentation qu'il peut y avoir sur
00:11:35
un site et les valeurs que vous avez ici,
00:11:37
45,
00:11:37
56 et cetera sont le sont en 1000000,
00:11:41
donc là par exemple le 45000000 de visiteurs
00:11:44
56000000 de visiteurs sur février,
00:11:46
et cetera.
00:11:47
Est-ce que vous pouvez juste prendre
00:11:48
2 Min potentiellement mettre en pause
00:11:50
la vidéo et essayer de vous dire,
00:11:52
qu'est-ce que vous arrivez à retirer
00:11:54
comme enseignement de ce tableau-là ?
00:11:56
Voilà donc ce qu'on peut
00:11:58
voir potentiellement,
00:11:59
c'est peut-être les valeurs les plus
00:12:00
faibles et les valeurs les plus fortes,
00:12:01
donc on voit,
00:12:02
quand on met le.
00:12:03
Le pic a été très fort à
00:12:05
75000000 que mars il y avait
00:12:07
pas grand monde à 36000000.
00:12:08
Mais globalement,
00:12:09
voilà dire beaucoup plus de choses.
00:12:11
C'est assez compliqué.
00:12:12
Par contre, si maintenant,
00:12:13
je m'amuse à le replacer dans
00:12:16
une visualisation et bien là,
00:12:17
potentiellement, on va se rendre
00:12:19
compte de beaucoup plus de choses.
00:12:22
Hop, excusez-moi.
00:12:22
Donc déjà on peut repérer.
00:12:24
Bon ça, on l'avait un petit peu
00:12:26
vu le meilleur mois et le plus
00:12:28
mauvais mois au cours de la période.
00:12:30
On va également pouvoir se rendre
00:12:31
compte que le 2e trimestre est
00:12:33
bien meilleur que le premier
00:12:35
puisque là on ici on a les 3 premiers
00:12:37
mois et là on se rend bien compte
00:12:39
que les valeurs qui se présentent
00:12:40
sur le 2e trimestre sont plus hautes.
00:12:43
On peut même en fait inconsciemment
00:12:44
essayer de tracer une droite pour
00:12:46
essayer de tracer une tendance
00:12:47
donc ce n’est pas forcément
00:12:49
conscient mais vous pouvez sans
00:12:50
en rendre compte le faire.
00:12:54
Et potentiellement aussi se rendre
00:12:55
compte de ce que on va être dans
00:12:57
le cadre d'une baisse pour l'été
00:12:59
puisque là on va arriver au mois de juin,
00:13:01
on voit que ça rebaisse alors qu'on était
00:13:03
sur une tendance haussière entre mars et mai.
00:13:05
Tout cela, vous auriez eu du
00:13:06
mal à vous en rendre compte,
00:13:08
notamment pour les tendances,
00:13:09
notamment pour la comparaison
00:13:12
du premier et du 2e trimestre.
00:13:14
Donc là visualisation sert bien
00:13:17
effectivement à recontextualiser,
00:13:18
à comprendre et interpréter
00:13:20
correctement les données.
00:13:24
Alors qu'est-ce qu'on peut aussi se
00:13:25
dire au niveau de la visualisation ?
00:13:27
Donc là on va rentrer dans des
00:13:29
choses un peu plus pratico pratiques
00:13:30
puisque on va avoir un grand degré de
00:13:32
personnalisation dans les visualisations
00:13:33
et les rapports qu'on va pouvoir créer.
00:13:35
Donc retenez bien qu’il n'y a rien
00:13:37
qui est là pour faire joli dans
00:13:39
une visualisation à chaque fois,
00:13:41
vous allez mettre un élément.
00:13:42
En gros, vous allez charger
00:13:44
d'une nouvelle information,
00:13:45
votre visualisation, votre histogramme,
00:13:46
votre tableau, votre courbe.
00:13:48
Et bien ça veut dire que c'est quelque
00:13:50
chose de supplémentaire à interpréter pour
00:13:52
la personne qui va lire ce tableau-là.
00:13:54
Où cette visualisation,
00:13:55
et donc c'est important que tout est un
00:13:57
intérêt et c'est un petit peu le schéma
00:13:58
ici que vous avez sur la droite ou en gros,
00:14:00
la personne va partir d'un
00:14:01
tableau qu'on est d'accord,
00:14:03
assez laid,
00:14:03
un peu à l'ancienne et donc il va
00:14:05
expliquer en gros tout ce qu'il fait,
00:14:07
donc il va retirer par exemple
00:14:08
la légende où n’y a pas besoin,
00:14:09
il va retirer la légende aussi sur la gauche,
00:14:12
il va enlever le cadre qui
00:14:13
effectivement ne servait à rien.
00:14:15
Il va supprimer tous les effets
00:14:16
graphiques qu'il peut y avoir sur
00:14:17
l'histogramme voilà enlever les ombres,
00:14:19
enlever les couleurs puisque
00:14:20
ça ne nous intéresse pas,
00:14:21
il va juste mettre en avant par exemple le
00:14:23
bacon puisque c'est ça qui l'intéressait.
00:14:24
Assez en Hongrie ?
00:14:25
Les valeurs parce que sinon les échelles
00:14:27
sont plus importantes que même les données,
00:14:29
il enlève les lignes qui n'apportent
00:14:30
au final pas beaucoup d'informations.
00:14:32
Il va même enlever l'échelle de gauche
00:14:34
pour mettre les valeurs directement sur
00:14:35
les histogrammes et donc on voit que là,
00:14:37
à partir de là où il y avait
00:14:39
énormément de couleurs,
00:14:39
des fonds et des lignes qui
00:14:41
n’étaient pas forcément nécessaire,
00:14:42
il est passé à quelque chose d'extrêmement.
00:14:44
Épuré donc, pour résumer un petit peu ça,
00:14:46
essayer de vous noter dans un
00:14:48
coin qu’au niveau des pratiques,
00:14:50
les couleurs sont des informations.
00:14:52
On ne s'amuse pas à mettre des
00:14:54
couleurs partout sur des cours
00:14:55
ou sur des histogrammes,
00:14:56
juste pour faire joli.
00:14:57
Les couleurs ont un sens.
00:14:58
C'est une information que vous
00:14:59
allez placer dans votre graphique,
00:15:00
donc il faut qu'elles aient un intérêt donc
00:15:02
c'est soit pour mettre en avant un élément,
00:15:04
soit pour créer 22.
00:15:06
Comment dire ?
00:15:07
2 ensembles de sous données,
00:15:08
et cetera, et cetera.
00:15:11
Pas de mise en forme textuelle ?
00:15:12
Esthétique,
00:15:12
ça ne sert à rien de surligner,
00:15:14
de mettre des italiques,
00:15:15
et cetera.
00:15:16
On va vraiment aller à l'essentiel,
00:15:17
mettre quelque chose
00:15:19
d'épuré et d'efficace.
00:15:21
Pas d'informations redondantes
00:15:21
c'est ce qu'on pouvait un peu
00:15:23
voir ici sur le graphique,
00:15:24
avec une échelle plus des.
00:15:27
C'était une légende qui était
00:15:29
juste ici,
00:15:30
donc ça ce n’est pas très intéressant
00:15:32
ce qu'on a 2 fois l'information et
00:15:33
donc on va aller charger encore une
00:15:35
fois le visuel alors que ce n’est pas
00:15:37
nécessaire puisque l'information
00:15:38
était déjà présente. Les échelles
00:15:41
ne sont pas toujours nécessaires,
00:15:43
donc là c'est exactement ce qu'on a vu ici.
00:15:45
On se rend compte que l'échelle
00:15:46
ce n’est déjà pas facile à lire,
00:15:47
qu'il va falloir suivre la ligne
00:15:48
tout le long de l'histogramme.
00:15:50
Et donc pourquoi ne pas mettre
00:15:51
directement les valeurs sur
00:15:53
chaque barre de l'histogramme ?
00:15:54
Les visualisations les plus ambitieuses ne
00:15:56
ne sont pas les plus claires à comprendre.
00:15:58
Alors ça, c'est quelque chose
00:15:59
que je vois souvent où
00:16:01
Par exemple,
00:16:01
les consultants que je suis vont aller
00:16:03
prendre des visualisations tout de
00:16:04
suite assez compliquée, assez haut.
00:16:06
Passeuses, le problème,
00:16:07
c'est que ces visualisations-là,
00:16:08
oui, elles sont sympathiques,
00:16:10
elles sont jolies,
00:16:11
mais elles ne sont pas forcément
00:16:13
super compréhensibles.
00:16:14
Si vous vous formez à Power BI et que
00:16:15
vous travaillez avec les données,
00:16:17
ce n'est pas forcément le cas de
00:16:18
tous vos collaborateurs, de tous vos,
00:16:19
de tous vos collègues et donc il
00:16:21
faut utiliser comme des choses
00:16:22
relativement simples des histogrammes,
00:16:24
des courbes,
00:16:24
des choses qui sont connues.
00:16:26
De de tous.
00:16:30
Et dernier point.
00:16:31
Et donc ça, on va de toute
00:16:32
façon un petit peu s'entraîner.
00:16:34
Il est important de
00:16:35
hiérarchiser l'information,
00:16:36
donc là ce n’est pas forcément des
00:16:38
rapports pour B c'est juste 2
00:16:40
visualisation que j'ai trouvée sur
00:16:41
Internet donc il y en a une qui est
00:16:43
plutôt bien et une qui est moins bien.
00:16:44
Je pense que vous avez deviné quelle
00:16:46
est la bonne et quelle est la mauvaise.
00:16:48
En gros l'idée c'est que on va essayer
00:16:50
déjà d'aérer au maximum les rapports ou
00:16:53
les Dashboard qu'on va pouvoir créer,
00:16:55
de mettre les informations les
00:16:56
plus importantes en haut?
00:16:57
Les indicateurs clés,
00:16:59
les fameux Capi I si vous travaillez un peu
00:17:02
là-dedans et en tout cas de bien délimité.
00:17:04
Des zones ici avec des données et depuis
00:17:06
donc d'aller du maquereau vers le micro,
00:17:08
d'aller sur des choses globales,
00:17:10
puis potentiellement si l'utilisateur
00:17:12
veut chercher davantage d'informations,
00:17:14
aller sur du plus granulaire,
00:17:15
mais tout le temps,
00:17:16
en gardant des espaces aérés et éviter
00:17:18
d'avoir des pages et des pages de graphiques.
00:17:21
À l'inverse,
00:17:21
on voit qu’ici,
00:17:23
c'est beaucoup plus compliqué qu'on se
00:17:24
retrouve avec des menus de de filtres
00:17:26
qui sont extrêmement importants,
00:17:28
donc ça a été fait sur Excel,
00:17:30
des Histogrammes avec des toutes petites
00:17:32
échelles qui sont complètement serrées,
00:17:34
donc on ne peut pas bien les voir.
00:17:36
Qu'est-ce qu'on a d'autre des histogrammes
00:17:37
qui ne sont pas forcément classes,
00:17:38
donc on ne comprend pas trop des
00:17:40
légendes avec des valeurs de chiffres
00:17:42
qui sont extrêmement dures à lire,
00:17:44
des camemberts avec encore une fois en gros,
00:17:45
le problème c'est que là,
00:17:46
tout est compressé,
00:17:47
serre et c'est très difficile
00:17:48
à lire et c'est un peu cafouillis,
00:17:50
c'est à dire que les valeurs du haut se
00:17:52
sont un tableau donc ce n’est vraiment pas
00:17:54
le plus intéressant à mettre en haut,
00:17:55
ce que tout de suite on va rentrer
00:17:57
dans de la donnée Granulaire donc
00:17:58
c'est plus intéressant de mettre
00:17:59
ce qu'on appelle des box de de Cap
00:18:01
I d'indicateurs clé ou de mettre
00:18:03
potentiellement effectivement un histogramme.
00:18:04
Ça peut se défendre mais tout
00:18:05
de suite aller sur du Granulaire
00:18:07
ce n’est pas forcément intéressant.
00:18:08
Donc on va aussi essayer lors de
00:18:10
la création des visualisations de
00:18:12
Eh bien de de de créer des choses
00:18:15
esthétiques et surtout des choses
00:18:16
qui sont bien rangées dans l'ordre
00:18:18
au niveau des valeurs.
00:18:22
Voilà ce que je pouvais vous
00:18:23
dire sur toute la partie,
00:18:24
sur la visualisation.
00:18:25
Évidemment, ce sont des
00:18:26
concepts un peu globaux.
00:18:28
Si le sujet vous intéresse parce que
00:18:29
ici on n'est pas sur un cours complet,
00:18:31
sur la data visualisation,
00:18:32
il y a beaucoup de ressources sur
00:18:34
Internet qui parlent de ce sujet-là.
00:18:36
Il y a des sites qui se sont spécialisés,
00:18:37
Même là-dedans et du coup on va
00:18:41
pouvoir attaquer la partie aussi
00:18:42
sur la statistique et seulement
00:18:44
après ça va arriver vite,
00:18:46
on va pouvoir attaquer la
00:18:47
création des visualisations.

Il n’existe aucun élément correspondant à votre recherche dans cette vidéo...
Effectuez une autre recherche ou retournez au contenu !

 

Mandarine AI: CE QUI POURRAIT VOUS INTÉRESSER

Rappel

Afficher